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Abstract. We present an alternative procedure to eliminate irregular contributions in the perturbation
expansion of c=0–matrix models representing the sum over triangulations of random surfaces, thereby
reproducing the results of Tutte [1] and Brézin et al. [2] for the planar model. The advantage of this
method is that the universality of the critical exponents can be proven from general features of the model
alone without explicit determination of the free energy and therefore allows for several straightforward
generalizations including cases with non-vanishing central charge c < 1.

1 Introduction

The use of matrix models for the description and solution
of theories of 2-dimensional quantum gravity coupled to
matter with conformal weight c ≤ 1 is well established
(see e.g. the reviews [3] and references therein). Critical
exponents agree with those found in the continuum de-
scription where methods of conformal quantum field the-
ory can be applied [4]. The fact that this agreement is by
no means trivial is mostly overlooked, although the equiv-
alence of the theory of continuous 2-dimensional surfaces
and the theory of abstract (combinatorical) triangulations
with respect to their critical behaviour is based on many
assumptions and indeed is presumably wrong for c > 1.
For the case of pure gravity (c = 0) an integration over
all metrics on a 2-dimensional surface modulo diffeomor-
phisms is replaced by a summation over abstract trian-
gulations T, which are defined merely by the adjacency
properties of their points:

Zcont
pure =

∫ Dgαβ

diff
e−S −→ Zdiscr

pure =
∑
T

e−S , (1)

with S = ζχ + µA in both cases if we identify χ with the
continuous and discrete version of the Euler characteristic
and A with the surface area and the number of triangles,
respectively.

A second assumption enters, when one replaces the
summation over abstract triangulations by a summation
over Feynamn graphs. By a duality transformation each
abstract triangulation can be identified with a Feynman
graph of an N ×N hermitean matrix model with cubic po-
tential [5]. Not all Feynman graphs, however, correspond
to regular triangulations. The universality of the corre-
sponding two statistical ensembles is the subject of this
letter. In a continuum limit, where A → ∞, those graphs
which from now on we refer to as irregular, even dominate
over the regular ones (see below, (19)).

The concrete case of pure (c=0) quantum gravity cor-
responds to a 1-matrix model and the partition function
for connected triangulations is given by the free energy as
the generating functional for connected vacuum graphs:

Zdiscr
pure ∼ Fmatrix

N (g) ≡ 1
N2 log Zmatrix

N (g)

=
∑
h,A

Ph(A) gAN−2h , (2)

where

Zmatrix
N (g) =

∫
dN2

Φ exp
(

−1
2
trΦ2 +

g√
N

trΦ3
)

. (3)

Here A denotes the number of vertices of the graph and
Ph(A) is the number of graphs with given A and genus
h. As usual, (3) is to be understood as a formal repre-
sentation of an asymptotic expansion in powers of g. Cor-
respondingly, operations on such expressions (taking the
logarithm, differentiation, integration, etc.) are operations
on formal power series expansions. As (2) is a topological
expansion in 1

N the limit N → ∞ results in the planar
model to which we want to restrict in the following.

The purpose of this letter is to show that universality
of the planar cubic model can be proven without knowing
details of the model, as e.g. the spectral distribution of the
matrix eigenvalues in the limit N →∞, which was required
for the results in [2], or the combinatorics of triangula-
tions, as it was used in [1]. The idea is to introduce new
couplings in the matrix model which can be adjusted using
constraint equations such that the irregular contributions
in the perturbation expansion cancel. Without explicitly
solving these equations they can be used to relate the
generating functional for regular graphs, F reg(g), to the
generating functional for all graphs, F all(g) = Fmatrix

∞ (g),
thereby proving universality. Furthermore, given the be-
haviour of F all(g) close to its singularity, our method al-
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Fig. 1. Dual constructions of tadpole graphs

lows to determine the radius of convergence (i.e. the crit-
ical coupling) for F reg(g).

We demonstrate this method for the case c=0, where
the logic of the procedure can be illustrated most clearly.
The extension to models with 0<c< 1 will in general be
straightforward, and indeed has partly been used to prove
universality for the case c= 1

2 [6].
In Sect. 2 we classify those irregular Feynman graphs

which do not correspond to triangulations. In Sect. 3 we
relate the generating functional for regular graphs with the
free energy of a modified matrix model with renormalized
couplings by formulating constraint equations for these
couplings. The proof of universality follows in Sect. 4. In
Sect. 5 we make use of some known facts about the un-
regularized model to determine the radius of convergence,
i.e. the critical point, for the regularized model.

2 Irregular graphs

The logic of our method is the construction of a regu-
larized model by elimination of all irregular graphs and
the subsequent direct comparison of its critical behaviour
with that of the original one. The first step thus consists
in identifying the irregular graphs.

Consider graphs containing 1-point and non-trivial 2-
point subgraphs: In the dual picture these correspond to
situations where either two vertices of the same triangle
are identified or two vertices of two different triangles are
identified without identification of the connecting edges
(links) – see Fig. 1 and 2. Those configurations are for-
bidden in the context of triangulations as discrete 2-dim.
manifolds, see e.g. [7]. In turn, these are also the only ir-
regularities that can arise from the planar cubic model
considered here, i.e. we have a one-to-one correspondence
between irregular graphs and graphs containing tadpoles
and/or non-trivial 2-point subgraphs.

Note that this argumentation is independent of the
value of c. It depends, however, on the fact hat we are
restricting to planar graphs (there exist non-planar graphs
without tadpoles and non-trivial 2-point subgraphs which
do not correspond to regular triangulations) and to graphs
of valence 3.

3 Construction of the regularized model

The construction of the regularized model, i.e. the gener-
ating functional F reg(g) for the numbers of regular trian-

1P

P2

Fig. 2. General situation in the dual construction of a 2-point
subgraph

gulations, can in general be achieved along the following
steps:

1. Introduce a modified partition function (and corre-
sponding free energy) from a matrix action, which con-
tains general couplings for those contributions, on
which one wants to put the contraints, i.e. 1-point-
and 2-point-functions:

Smod(Φ) = −α

2
trΦ2 +

g√
N

trΦ3 + ρ
√

NtrΦ

Zmod
N (g, ρ, α) = eN2Fmod(g,ρ,α) =

∫
dN2

Φ e−Smod(Φ),

(4)

2. Impose two conditions on the free energy of the modi-
fied model (4), where tadpoles are removed by setting
the 1-point-function of the modified model equal to
zero, i.e.

∂Fmod(g, ρ, α)
∂ρ

= 0 , (5)

and self-energy contributions represented by non-triv-
ial 2-point subgraphs are eliminated by assigning the
value of the free propagator to the full 2-point func-
tion:

∂Fmod(g, ρ, α)
∂α

= −1
2

. (6)

A graphical representation of these two conditions is
sketched in Fig. 3.

3. Evaluate the conditions (5) and (6) to find α(g) and
ρ(g). The free energy F reg(g) is obtained from
Fmod(g, ρ, α) by a Legendre transformation with re-
spect to ρ and α,

F reg(g) = (7)

=
[
Fmod(g, ρ, α) − ∂Fmod

∂ρ
ρ − ∂Fmod

∂α
α

]
ρ=ρ(g),α=α(g)

=
[
Fmod(g, ρ, α) +

1
2
α

]
ρ=ρ(g),α=α(g)

,

where we have made explicit use of the conditions (5)
and (6) in the second line. It will turn out that for the
proof of universality it is not necessary to know Fmod

or F all explicitly.
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Fig. 3. Elimination of irregular graphs: a) Tadpole elimination
b) Elimination of self-energy contributions

4 Proof of universality

For the proof of universality we have to show that F all(g)
and F reg(g) exhibit the same critical exponents when g
approaches its respective radius of convergence. Equiva-
lently, we will prove that the derivatives of both functions
with respect to g have the same critical behaviour. First
we note that

dF reg(g)
dg

=
∂Fmod(g, ρ, α)

∂g

∣∣∣∣
ρ=ρ(g),α=α(g)

,

which is a general consequence of (7). On the other hand,
Fmod satisfies a generalized scaling relation which is easily
obtained from (4) by a change of variables Φ → λΦ:

Fmod(g, ρ, α) = lnλ + Fmod(λ3g, λρ, λ2α) .

Differentiating with respect to λ, setting λ = 1, and in-
serting the constraint equations (5) and (6) leads to

∂Fmod(g, α, ρ)
∂g

∣∣∣∣
ρ=ρ(g),α=α(g)

=
α(g) − 1

3g
. (8)

Thus, we have to show that α(g) has the same critical
behaviour as ∂F all(g)/∂g. For this we will derive a relation
between F all and Fmod and use the constraint equations
to obtain a relation between α and the derivative of F all.

The partition function (4) is not changed by the intro-
duction of a new integration variable Φ = aΦ̂ + bI (where
I denotes the N × N identity matrix). However, the two
parameters a and b may be tuned such that the action
expressed in terms of Φ̂ contains no linear term, and the
quadratic term appears with a factor −1/2. In this way
the modified model can be related to the original matrix
model and we obtain:

Fmod(g, ρ, α) = (9)

= F all(k) − 1
4

log
(
α2 − 12 gρ

)
+

α−
√

α2−12gρ

6 g
×

×
[

ρ +
(α−

√
α2−12gρ)2

36 g
− α(α−

√
α2− 12gρ)

12 g

]
,

where
k ≡ a3g =

g

(α2 − 12gρ)
3
4

. (10)

Inserting this relation into the conditions (5) and (6)
leads to

3 g

α2 − 12gρ

(
1 + 3k

∂F all(k)
∂k

)
(11)

+
α −

√
α2 − 12gρ

6 g
= 0

α

α2 − 12gρ

(
1 + 3k

∂F all(k)
∂k

)
(12)

+

(
α −

√
α2 − 12gρ

6 g

)2

= 1 .

From these two conditions we can eliminate ∂F all(k)/∂k
to obtain the first solution

ρ(g) = −3 g . (13)

Without the explicit form of F all(k) the remaining con-
dition cannot be solved to obtain α(g). However, for the
proof of universality we only need to confirm, that α(g)
has the same critical behaviour for g → gc as ∂F all(k)/∂k
for k → kc. This follows immediately by inserting the so-
lution ρ = −3g into the remaining constraint equation,
say (11), and making an expansion in δk ≡ k − kc. For
the equation to hold, the leading non-integer power of
δg = g − gc in α(g) has to be equal to the leading non-
integer power of δk in ∂F all/∂k. This completes the proof
of universality.

The whole procedure – and thus the proof of universal-
ity – immediately carries over to planar c=0 one-matrix-
models with arbitrary even potential of the order 2p. In
these models tadpoles are absent and the remaining renor-
malization of the 2-point function leads to an expression
analogous to (8), with the 3 in the denominator replaced
by 2p.

Furthermore, note that relations (7), (10) and (11) are
independent of N . Furthermore, in the case of complex in-
stead of hermitean matrices, condition (6) guarantees the
elimination of non-trivial 2-point subgraphs for arbitrary
topologies. In general however, there will exist other irreg-
ularities not stemming from non-trivial 2-point subgraphs
whose systematic elimination fails because their classifica-
tion is unclear.

5 Critical behaviour

We now want to calculate the radius of convergence, gc,
of the generating function of regular graphs, F reg(g). This
corresponds to the critical point of the regularized model.
For this we have to know the radius of convergence, kc, of
F all(k) as well as the leading coefficient a1 in an expansion
of F all(k) around this critical point. We take these values
from [2], for details of the calculation see also [8]:

kc =

√
1

108
√

3
(14)

a1 ≡ ∂F all(k)
∂k

∣∣∣∣
k=kc

= − 2
3 kc

(
5 − 3

√
3
)

. (15)
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We now evaluate (11) at the critical point. To lowest order
we find

0 =
1 − 3a1kc

α2
c + 36g2

c
+

αc−
√

α2
c + 36g2

c

18 g2
c

. (16)

With the given values for kc (14) and a1 (15) we there-
fore obtain an equation between gc and αc = α(gc). A
second independent relation between these two quantities
is provided by (10), evaluated at the critical point with
the known solution ρ = −3g. From these two equations
we immediately obtain the new critical point to be

gc =

√
3

256
. (17)

This value agrees with the result obtained by [2] and [1].
Let us finally add a comment on the fact, that uni-

versality is by no means trivial. From the known cricital
values we can deduce that the number of graphs n(A) as a
function of the number of vertices A asymptotically grows
like

n(A) A→∞−→ ∼
(

1
kc

)A

Aκ , (18)

where κ is the critical exponent proven to be universal. kc
is the radius of convergence of the corresponding gener-
ating functional (F all or F reg). (We should note that for
our choice of the matrix action (3) the combinatorics of
the perturbation expansion leads to a factor of 3 for each
vertex, i.e. after a duality transformation one obtains an
extra factor of 3 for each triangle in a triangulation. Our
notation agrees with the one used by [2] and differs from
[1] by this factor of 3 for each triangle.)

Therefore, the ratio of the number of regular graphs
nreg(A) to the number of all graphs nall(A) for large values
of A is given by

nreg(A)
nall(A)

A→∞−→ ∼
(

256
3 · 108

√
3

)A/2
A→∞−→ 0 . (19)

Thus, in the critical region the regular graphs considered
as a subset of all graphs represent a partition of measure
zero. So one cannot argue that universality holds because
the regular graphs “dominate” the ensemble.

6 Summary and outlook

We presented a new and straightforward method of prov-
ing universality of the planar, cubic (c=0) matrix model
with respect to the elimination of graphs not correspond-
ing to regular triangulations, thereby reproducing results
of Brézin et al. with, however, much less information
needed about the original model. Our method also allows
the determination of the new critical point from the knowl-
edge of the old one.

An interesting generalization would be to models for
which c ≥ 0. The extension of our method to models with
0 ≤ c ≤ 1 is in principle possible and has partly been
used in [6] for the case c = 1/2. The situation for c ≥ 1,
however, is still unclear (see also the references in [9]).
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